baygel: Bayesian Shrinkage Estimators for Precision Matrices in Gaussian Graphical Models

This R package offers block Gibbs samplers for the Bayesian (adaptive) graphical lasso, ridge, and naive elastic net priors. These samplers facilitate the simulation of the posterior distribution of precision matrices for Gaussian distributed data and were originally proposed by: Wang (2012) <doi:10.1214/12-BA729>; Smith et al. (2022) <doi:10.48550/arXiv.2210.16290> and Smith et al. (2023) <doi:10.48550/arXiv.2306.14199>, respectively.

Version: 0.3.0
Imports: Rcpp (≥ 1.0.8), RcppArmadillo (≥
LinkingTo: Rcpp, RcppArmadillo, RcppProgress
Suggests: MASS, pracma
Published: 2023-11-11
DOI: 10.32614/CRAN.package.baygel
Author: Jarod Smith ORCID iD [aut, cre], Mohammad Arashi ORCID iD [aut], Andriette Bekker ORCID iD [aut]
Maintainer: Jarod Smith <jarodsmith706 at>
License: GPL (≥ 3)
NeedsCompilation: yes
CRAN checks: baygel results


Reference manual: baygel.pdf


Package source: baygel_0.3.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): baygel_0.3.0.tgz, r-oldrel (arm64): baygel_0.3.0.tgz, r-release (x86_64): baygel_0.3.0.tgz, r-oldrel (x86_64): baygel_0.3.0.tgz
Old sources: baygel archive


Please use the canonical form to link to this page.