SpatGC: Bayesian Modeling of Spatial Count Data

Provides a collection of functions for preparing data and fitting Bayesian count spatial regression models, with a specific focus on the Gamma-Count (GC) model. The GC model is well-suited for modeling dispersed count data, including under-dispersed or over-dispersed counts, or counts with equivalent dispersion, using Integrated Nested Laplace Approximations (INLA). The package includes functions for generating data from the GC model, as well as spatially correlated versions of the model. See Nadifar, Baghishani, Fallah (2023) <doi:10.1007/s13253-023-00550-5>.

Version: 0.1.0
Depends: R (≥ 4.0)
Imports: mvtnorm, stats, spdep, sf
Suggests: INLA (≥ 23.06.15)
Published: 2024-04-25
DOI: 10.32614/CRAN.package.SpatGC
Author: Mahsa Nadifar ORCID iD [aut, cre], Hossein Baghishani ORCID iD [aut]
Maintainer: Mahsa Nadifar <mahsa.nst at>
License: GPL-2 | GPL-3 [expanded from: GPL (≥ 2)]
NeedsCompilation: no
Materials: README NEWS
CRAN checks: SpatGC results


Reference manual: SpatGC.pdf


Package source: SpatGC_0.1.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): SpatGC_0.1.0.tgz, r-oldrel (arm64): SpatGC_0.1.0.tgz, r-release (x86_64): SpatGC_0.1.0.tgz, r-oldrel (x86_64): SpatGC_0.1.0.tgz


Please use the canonical form to link to this page.