Term
|
Definition
|
Description
|
\(X\)
|
–
|
Predictor matrix for the true outcome.
|
\(Z^{(1)}\)
|
–
|
Predictor matrix for the first-stage observed outcome, conditional on
the true outcome.
|
\(Z^{(2)}\)
|
–
|
Predictor matrix for the second-stage observed outcome, conditional on
the true outcome and first-stage observed outcome.
|
\(Y\)
|
\(Y \in \{1, 2\}\)
|
True binary outcome. Reference category is 2.
|
\(y_{ij}\)
|
\(\mathbb{I}\{Y_i = j\}\)
|
Indicator for the true binary outcome.
|
\(Y^{*(1)}\)
|
\(Y^{*(1)} \in \{1, 2\}\)
|
First-stage observed binary outcome. Reference category is 2.
|
\(y^{*(1)}_{ik}\)
|
\(\mathbb{I}\{Y^{*(1)}_i = k\}\)
|
Indicator for the first-stage observed binary outcome.
|
\(Y^{*(2)}\)
|
\(Y^{*(2)} \in \{1, 2\}\)
|
Second-stage observed binary outcome. Reference category is 2.
|
\(y^{*(2)}_{i \ell}\)
|
\(\mathbb{I}\{Y^{*(2)}_i = \ell \}\)
|
Indicator for the second-stage observed binary outcome.
|
True Outcome Mechanism
|
\(\text{logit} \{ P(Y = j | X ; \beta) \} =
\beta_{j0} + \beta_{jX} X\)
|
Relationship between \(X\) and the true
outcome, \(Y\).
|
First-Stage Observation Mechanism
|
\(\text{logit}\{ P(Y^{*(1)} = k | Y = j,
Z^{(1)} ; \gamma^{(1)}) \} = \gamma^{(1)}_{kj0} +
\gamma^{(1)}_{kjZ^{(1)}} Z^{(1)}\)
|
Relationship between \(Z^{(1)}\) and
the first-stage observed outcome, \(Y^{*(1)}\), given the true outcome \(Y\).
|
Second-Stage Observation Mechanism
|
\(\text{logit}\{ P(Y^{*(2)} = \ell | Y^{*(1)}
= k, Y = j, Z^{(2)} ; \gamma^{(2)}) \} = \gamma^{(2)}_{\ell kj0} +
\gamma^{(2)}_{\ell kjZ^{(2)}} Z^{(2)}\)
|
Relationship between \(Z^{(2)}\) and
the second-stage observed outcome, \(Y^{*(2)}\), given the first-stage observed
outcome, \(Y^{*(1)}\), and the true
outcome \(Y\).
|
\(\pi_{ij}\)
|
\(P(Y_i = j | X ; \beta) =
\frac{\text{exp}\{\beta_{j0} + \beta_{jX} X_i\}}{1 +
\text{exp}\{\beta_{j0} + \beta_{jX} X_i\}}\)
|
Response probability for individual \(i\)’s true outcome category.
|
\(\pi^{*(1)}_{ikj}\)
|
\(P(Y^{*(1)}_i = k | Y = j, Z^{(1)} ;
\gamma^{(1)}) = \frac{\text{exp}\{\gamma^{(1)}_{kj0} +
\gamma^{(1)}_{kjZ^{(1)}} Z_i^{(1)}\}}{1 + \text{exp}\{\gamma^{(1)}_{kj0}
+ \gamma^{(1)}_{kjZ^{(1)}} Z_i^{(1)}\}}\)
|
Response probability for individual \(i\)’s first-stage observed outcome
category, conditional on the true outcome.
|
\(\pi^{*(2)}_{i \ell kj}\)
|
\(P(Y^{*(2)}_i = \ell | Y^{*(1)} = k, Y = j,
Z^{(2)} ; \gamma^{(2)}) = \frac{\text{exp}\{\gamma^{(2)}_{\ell kj0} +
\gamma^{(2)}_{\ell kjZ^{(2)}} Z_i^{(2)}\}}{1 +
\text{exp}\{\gamma^{(2)}_{\ell kj0} + \gamma^{(2)}_{\ell kjZ^{(2)}}
Z_i^{(2)}\}}\)
|
Response probability for individual \(i\)’s second-stage observed outcome
category, conditional on the first-stage observed outcome and the true
outcome.
|
\(\pi^{*(1)}_{ik}\)
|
\(P(Y^{*(1)}_i = k | X, Z^{(1)} ;
\gamma^{(1)}) = \sum_{j = 1}^2 \pi^{*(1)}_{ikj} \pi_{ij}\)
|
Response probability for individual \(i\)’s first-stage observed outcome
cateogry.
|
\(\pi^{*(1)}_{jj}\)
|
\(P(Y^{*(1)} = j | Y = j, Z^{(1)} ;
\gamma^{(1)}) = \sum_{i = 1}^N \pi^{*(1)}_{ijj}\)
|
Average probability of first-stage correct classification for category
\(j\).
|
\(\pi^{*(2)}_{jjj}\)
|
\(P(Y^{*(2)} = j | Y^{*(1)}_i = j, Y = j,
Z^{(2)} ; \gamma^{(2)}) = \sum_{i = 1}^N \pi^{*(2)}_{ijjj}\)
|
Average probability of first-stage and second-stage correct
classification for category \(j\).
|
First-Stage Sensitivity
|
\(P(Y^{*(1)} = 1 | Y = 1, Z^{(1)} ;
\gamma^{(1)}) = \sum_{i = 1}^N \pi^{*(1)}_{i11}\)
|
True positive rate. Average probability of observing first-stage outcome
\(k = 1\), given the true outcome \(j = 1\).
|
First-Stage Specificity
|
\(P(Y^{*(1)} = 2 | Y = 2, Z^{(1)} ;
\gamma^{(1)}) = \sum_{i = 1}^N \pi^{*(1)}_{i22}\)
|
True negative rate. Average probability of observing first-stage outcome
\(k = 2\), given the true outcome \(j = 2\).
|
\(\beta_X\)
|
–
|
Association parameter of interest in the true outcome mechanism.
|
\(\gamma^{(1)}_{11Z^{(1)}}\)
|
–
|
Association parameter of interest in the first-stage observation
mechanism, given \(j=1\).
|
\(\gamma^{(1)}_{12Z^{(1)}}\)
|
–
|
Association parameter of interest in the first-stage observation
mechanism, given \(j=2\).
|
\(\gamma^{(2)}_{111Z^{(2)}}\)
|
–
|
Association parameter of interest in the second-stage observation
mechanism, given \(k = 1\) and \(j = 1\).
|
\(\gamma^{(2)}_{121Z^{(2)}}\)
|
–
|
Association parameter of interest in the second-stage observation
mechanism, given \(k = 2\) and \(j = 1\).
|
\(\gamma^{(2)}_{112Z^{(2)}}\)
|
–
|
Association parameter of interest in the second-stage observation
mechanism, given \(k = 1\) and \(j = 2\).
|
\(\gamma^{(2)}_{122Z^{(2)}}\)
|
–
|
Association parameter of interest in the second-stage observation
mechanism, given \(k = 2\) and \(j = 2\).
|