mlr3torch: Deep Learning with 'mlr3'

Deep Learning library that extends the mlr3 framework by building upon the 'torch' package. It allows to conveniently build, train, and evaluate deep learning models without having to worry about low level details. Custom architectures can be created using the graph language defined in 'mlr3pipelines'.

Version: 0.1.0
Depends: mlr3 (≥ 0.20.0), mlr3pipelines (≥ 0.6.0), torch (≥ 0.13.0), R (≥ 3.5.0)
Imports: backports, checkmate (≥ 2.2.0), data.table, lgr, methods, mlr3misc (≥ 0.14.0), paradox (≥ 1.0.0), R6, withr
Suggests: callr, future, ggplot2, igraph, jsonlite, knitr, magick, mlr3tuning (≥ 1.0.0), progress, rmarkdown, rpart, viridis, visNetwork, testthat (≥ 3.0.0), torchvision (≥ 0.6.0), waldo
Published: 2024-07-08
DOI: 10.32614/CRAN.package.mlr3torch
Author: Sebastian Fischer ORCID iD [cre, aut], Bernd Bischl ORCID iD [ctb], Lukas Burk ORCID iD [ctb], Martin Binder [aut], Florian Pfisterer ORCID iD [ctb]
Maintainer: Sebastian Fischer <sebf.fischer at gmail.com>
License: LGPL (≥ 3)
Copyright: see file COPYRIGHTS
NeedsCompilation: no
Materials: README NEWS
CRAN checks: mlr3torch results

Documentation:

Reference manual: mlr3torch.pdf

Downloads:

Package source: mlr3torch_0.1.0.tar.gz
Windows binaries: r-devel: mlr3torch_0.1.0.zip, r-release: mlr3torch_0.1.0.zip, r-oldrel: mlr3torch_0.1.0.zip
macOS binaries: r-release (arm64): mlr3torch_0.1.0.tgz, r-oldrel (arm64): not available, r-release (x86_64): mlr3torch_0.1.0.tgz, r-oldrel (x86_64): not available

Linking:

Please use the canonical form https://CRAN.R-project.org/package=mlr3torch to link to this page.