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Abstract

Empirical likelihood enables a nonparametric, likelihood-driven style of inference with-
out relying on assumptions frequently made in parametric models. Empirical likelihood-
based tests are asymptotically pivotal and thus avoid explicit studentization. This paper
presents the R package melt that provides a unified framework for data analysis with
empirical likelihood methods. A collection of functions are available to perform multi-
ple empirical likelihood tests for linear and generalized linear models in R. The package
melt offers an easy-to-use interface and flexibility in specifying hypotheses and calibra-
tion methods, extending the framework to simultaneous inferences. Hypothesis testing
uses a projected gradient algorithm to solve constrained empirical likelihood optimization
problems. The core computational routines are implemented in C++, with OpenMP for
parallel computation.

Keywords: empirical likelihood, generalized linear models, hypothesis testing, optimization,
R.

1. Introduction

The likelihood is an essential component of statistical inference. In a nonparametric or semi-
parametric setting, where the quantity of interest is finite-dimensional, the maximum like-
lihood approach is not applicable since the underlying data-generating distribution is left
unspecified. A popular approach in this context is the method of moments or the two-step
generalized method of moments (GMM) (Hansen 1982) where only partial information is spec-
ified by moment conditions. Various one-step alternatives to GMM have been proposed over
the last decades in the statistics and econometrics literatures (see, e.g., Efron 1981; Imbens
1997; Newey and Smith 2004).

One such alternative is empirical likelihood (EL) (Owen 1988, 1990; Qin and Lawless 1994).
EL defines a likelihood function by profiling a nonparametric likelihood subject to the mo-
ment restrictions. While it is nonparametric in nature, some desirable properties of parametric
likelihood apply to EL. Most notably, the EL ratio functions have limiting chi-square distri-
butions under certain conditions. Without explicit studentization, confidence regions for the
parameters can be constructed in much the same way as with a parametric likelihood. As
the name suggests, however, the empirical distribution of the data determines the shape of
the confidence region. Also, coverage accuracy of the confidence region can further be im-
proved in principle, since EL is Bartlett-correctable (DiCiccio, Hall, and Romano 1991). In
terms of estimation, the standard expansion argument (e.g., Yuan and Jennrich 1998; Jacod
and Sørensen 2018) establishes the consistency and asymptotic normality of the maximum
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empirical likelihood estimator (MELE). Moreover, Newey and Smith (2004) showed that the
MELE generally has a smaller bias than its competitors and achieves higher-order efficiency
after bias correction. EL methods have been extended to other areas, including linear mod-
els (Owen 1991), generalized linear models (Kolaczyk 1994; Chen and Cui 2003), survival
analysis (Li, Li, and Zhou 2005), time series models (Kitamura 1997; Nordman and Lahiri
2014), and high-dimensional data analysis (Chen, Peng, and Qin 2009; Hjort, McKeague, and
van Keilegom 2009). For an overview of EL and its applications, see Owen (2001) and Chen
and van Keilegom (2009).

In the R language (R Core Team 2023), some software packages implementing EL and related
methods are available from the Comprehensive R Archive Network (CRAN). The emplik

package (Zhou 2023) provides a wide range of functions for analyzing censored and truncated
data with EL. Confidence intervals for a one-dimensional parameter can also be constructed.
Other examples and applications of the package can be found in Zhou (2015). The emplik2

package (Barton 2022) is an extension for the two sample problems. Both packages cover
the methods for the mean with uncensored data, which is the simplest case in terms of com-
putation. In addition, the EL package (Valeinis and Cers 2022) performs EL tests for the
difference between two sample means and the difference between two smoothed Huber esti-
mators. The eel package (Wu and Zhang 2015) implements the extended empirical likelihood
method (Tsao and Wu 2013) that expands the domain of EL to the full parameter space by
applying a similarity transformation. It escapes the so-called “convex hull constraint” of EL
that confines the domain to a bounded region. In fact, the gradient of log EL ratio func-
tions diverges at the boundary. Using this property, the elhmc package (Kien, Chaudhuri,
and Wei 2017) contains a single function ELHMC for Hamiltonian Monte Carlo sampling in
Bayesian EL computation (Chaudhuri, Mondal, and Yin 2017). The ELCIC package (Shen
and Wang 2023) develops an EL-based consistent information criterion in a model selection
framework. In a broader context of GMM and generalized empirical likelihood (Smith 1997), a
few packages can be used for estimation with EL. The gmm package (Chaussé 2010) provides
flexibility in specifying moment conditions. Other than GMM and EL, continuous updating
(Hansen, Heaton, and Yaron 1996) and several estimation methods that belong to the family
of generalized empirical likelihood are available. The gmm package has been superseded by
the momentfit package (Chaussé 2022), which adds exponential tilting (Kitamura and Stutzer
1997) estimation and methods for constructing two-dimensional confidence regions.

This paper presents the R package melt (Kim 2023) that performs multiple empirical likeli-
hood tests for regression analysis. The primary focus of the package is on linear and gener-
alized linear models, perhaps most commonly used with the lm() and glm() functions in R.
The package considers only just-identified models where the number of moment conditions
equals the number of parameters. Typical linear models specified by formula objects in R

are just-identified. In this case, the MELE is identical to the maximum likelihood estima-
tor, and the estimate is easily obtained using lm.fit() or glm.fit() in the stats package.
The fitted model then serves as a basis for testing hypotheses, which is a core component
of the package. EL-based tests do not involve standard errors and vcov() methods since
they are asymptotically pivotal and thus avoid explicit studentization. For this reason it is
challenging to incorporate EL methods directly into other packages that perform inferences
for parametric models using vcov(). We aim to bridge the gap and provide an easy-to-use
interface that enables applying the methods to tasks routinely accomplished in R. Standard
tests performed by summary.lm() and summary.glm() methods, such as significance tests of
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the coefficients and an overall F test or a chi-square test, are available. Furthermore, in line
with lht() in the car package (Fox and Weisberg 2019) or glht() in the multcomp package
(Hothorn, Bretz, and Westfall 2008), the user can specify linear hypotheses to be tested.
Multiple testing procedures are provided to control the family-wise error rate. Constructing
confidence intervals and detecting outliers in a fitted model can also be done, adding more
options for data analysis. Note that all the tests and methods rely on EL and its asymptotic
properties. Although conceptually advantageous over parametric methods, this can lead to
poor finite sample performance. Therefore, several calibration techniques are implemented in
melt to mitigate this drawback of EL.

The rest of the paper is organized as follows. Section 2 describes EL methods and compu-
tational aspects of testing hypotheses with EL. Section 3 provides an overview of the melt

package. Section 4 shows the basic usage of melt with implementation details. Section 5
presents an application to pest control experiments. We conclude with a summary and direc-
tions for future development in Section 6.

2. Background

2.1. Empirical likelihood framework

We describe a general framework for EL formulation. Suppose we observe independent and
identically distributed (i.i.d.) p-dimensional random variables X1, . . . , Xn from a distribution
P . Consider a parameter θ ≡ θ(P ) ∈ Θ and an estimating function g(Xi, θ) that takes its
values in R

p and satisfies the following moment condition:

E[g(Xi, θ)] = 0, (1)

where the expectation is taken with respect to P . Without further information on P , we
restrict our attention to a family of multinomial distributions supported on the data. The
nonparametric likelihood is given by

L(P ) =
n∏

i=1

P ({Xi}) =
n∏

i=1

pi,

and the empirical distribution Pn maximizes L with L(Pn) = n−n. Then the (profile) EL
ratio function is defined as

R(θ) = max
pi

{
n∏

i=1

npi :
n∑

i=1

pig(Xi, θ) = 0, pi ≥ 0,
n∑

i=1

pi = 1

}
, (2)

with L(θ) =
∏n

i=1 pi denoting the corresponding EL function. Ties in the data do not affect
the EL formulation both computationally and theoretically. We can assign probability weight
pi to each observation as if there are no ties and still obtain the same EL ratio value (Owen
2001, Section 2.3). The profiling removes all the nuisance parameters, the pis attached to
the data, yielding a p-dimensional subfamily indexed by θ. Note that the data determine
the multinomial distributions; thus, the reduction to a subfamily does not correspond to a
parametric model. See DiCiccio and Romano (1990) for a detailed discussion of how the
reduction connects to the notion of least favorable families (Stein 1956).
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We maximize
∏n

i=1 npi, or equivalently
∑n

i=1 log(npi), subject to the constraints in Equa-
tion 2. The convex hull constraint refers to the condition that the convex hull of the points
{g(Xi, θ)}ni=1 contains the zero vector. If the constraint is not satisfied, the problem is infea-
sible as some pis are forced to be negative to match the condition that

∑n
i=1 pig(Xi, θ) = 0.

Otherwise, the problem admits a unique interior solution since the objective function is con-
cave and the feasible set is convex. Using the method of Lagrange multipliers, we write

L(p1, . . . , pn, λ, γ) =
n∑

i=1

log(npi)− nλ⊤

n∑

i=1

pig(Xi, θ) + γ

(
n∑

i=1

pi − 1

)
,

where λ and γ are the multipliers. Differentiating L with respect to its arguments and setting
the derivatives to zero gives γ = −n. Then the solution is given by

pi =
1

n

1

1 + λ⊤g(Xi, θ)
, (3)

where λ ≡ λ(θ) satisfies
1

n

n∑

i=1

g(Xi, θ)

1 + λ⊤g(Xi, θ)
= 0. (4)

Instead of solving the nonlinear Equation 4, we solve the dual problem with respect to λ.
Substituting the expression for pi in Equation 3 into

∑n
i=1 log(npi) gives

log (R(θ)) = −
n∑

i=1

log
(
1 + λ⊤g(Xi, θ)

)
=: r(λ). (5)

Now consider minimizing r(λ) subject to 1 + λ⊤g(Xi, θ) ≥ 1/n for i = 1, . . . , n with θ fixed.
This is a convex optimization problem, where the constraints correspond to the condition
that 0 ≤ pi ≤ 1 for all i. Next, we remove the constraints by employing a pseudo logarithm
function (Owen 1990)

log⋆(x) =

{
log(x), if x ≥ 1/n,

−n2x2/2 + 2nx− log(n)− 3/2, if x < 1/n.
(6)

Minimizing r⋆(λ) = −
∑n

i=1 log⋆(1 + λ⊤g(Xi, θ)) without the constraints does not affect the
solution and the Newton-Raphson method can be applied to find it. If the convex hull
constraint is violated, the algorithm does not converge with ∥λ∥ increasing as the iteration
proceeds. Hence, it can be computationally more efficient to minimize r⋆(λ) first to get
log(R(θ)) and indirectly check the convex hull constraint by observing λ and pis. Note that
EL is maximized when λ = 0 and pi = 1/n for all i. It follows from Equation 4 that θ̂, the
MELE, is obtained by solving the estimating equations

∑n
i=1 g(Xi, θ) = 0. The existence,

uniqueness, and asymptotic properties of θ̂ are well established in the literature.

Assume that there exists a true parameter value θ0 ∈ Θ that is the unique solution to the
moment condition in Equation 1. Similar to the parametric likelihood method, define minus
twice the empirical log-likelihood ratio function as l(θ) = −2 log(R(θ)). Under regularity
conditions, it is known that a nonparametric version of Wilks’ theorem holds. That is,
l(θ0) →d χ2

p as n → ∞, where χ2
p is the chi-square distribution with p degrees of freedom.

See, e.g., Qin and Lawless (1994) for proof and the treatment of more general cases, including
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the over-identified ones. For a level α ∈ (0, 1), let χ2
p,α be the 100(1− α)%th percentile of

χ2
p. Since P (l(θ0) ≤ χ2

p,α) → 1− α, an asymptotic 100(1− α)% confidence region for θ can
be obtained as {

θ : l(θ) ≤ χ2
p,α

}
. (7)

Often the chi-square calibration is unsatisfactory due to slow convergence, especially when n
is small. We review other calibration methods that address this issue. First, consider EL for
the mean with g(Xi, θ) = Xi − θ and θ0 = E[Xi]. The MELE is the sample average X̄ since∑n

i=1(Xi − X̄) = 0. It can be shown that l(θ0) = n(X̄ − θ0)⊤V −1(X̄ − θ0) + oP (1), where
V = n−1∑n

i=1(Xi − θ0)(Xi − θ0)⊤. Let S = (n− 1)−1∑n
i=1(Xi − X̄)(Xi − X̄)⊤ and define a

Hotelling’s T squared statistic as T 2 = n(X̄ − θ0)⊤S−1(X̄ − θ0). It follows that

n(X̄ − θ0)⊤V −1(X̄ − θ0) = nT 2/(T 2 + n− 1) = T 2 + OP (n−1).

This suggests that we can use p(n− 1)Fp,n−p,α/(n− p) in place of χ2
p,α, where Fp,n−p is a F

distribution with p and n− p degrees of freedom. The F calibration yields a larger critical
value than the chi-square calibration, which leads to a better coverage probability of the
confidence region in Equation 7. Next, a more generally applicable calibration method is the
Bartlett correction. Based on the Edgeworth expansion, it requires Cramér’s condition and
the existence of finite higher moments of g(Xi, θ). The correction is given by a scale multiple
of χ2

p,α as (1 + a/n)χ2
p,α with an unknown constant a. In practice, the Bartlett correction

involves getting a consistent estimate â with plug-in sample moments. The coverage error of
the Bartlett corrected confidence region is reduced from O(n−1) to O(n−2) (DiCiccio et al.
1991), which is unattainable by the F calibration. Another effective calibration method is the
bootstrap. Let X̃n = {X̃1, . . . , X̃n} denote the null-transformed data such that EPn

[g(X̃i, θ)] =
n−1∑n

i=1 g(X̃i, θ) = 0, so Equation 1 holds for X̃n with Pn. Define a bootstrap sample
X̃ ∗

n = {X̃∗
1 , . . . , X̃∗

n} as i.i.d. observations from X̃n. We can compute the bootstrap EL ratio
l∗(θ) with X̃ ∗

n in the same way as before. The critical value, the 100(1− α)%th percentile
of the distribution of l∗(θ), can be approximated using a large number, say B, of bootstrap
samples. As an example, we may set X̃i = Xi − X̄ + θ when g(Xi, θ) = Xi − θ. This is
equivalent to computing l∗(X̄) with a bootstrap sample from the observed data directly. The
O(n−2) coverage error can also be achieved by the bootstrap calibration (Hall and Scala 1990).

Although EL does not require full model specification, it is not entirely free of misspecification
concerns. Developing diagnostic measures for EL is still an open problem, and we briefly
introduce the technique of empirical likelihood displacement (ELD) (Lazar 2005). Much like
the concept of likelihood displacement (Cook 1986), ELD can be used to detect influential
observations or outliers. With the MELE θ̂ from the complete data, consider reduced data
with the ith observation deleted and the corresponding MELE estimate θ̂(i), Then ELD is
defined as

ELDi = 2
(
L(θ̂)− L(θ̂(i))

)
, (8)

where θ̂(i) is plugged into the original EL function L(θ). If ELDi is large, the ith observation
is an influential point and can be inspected as a possible outlier. See Zhu, Ibrahim, Tang,
and Zhang (2008) for other diagnostic measures for EL.

2.2. Empirical likelihood for linear models
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We now turn our attention to linear models, which are the main focus of melt. Suppose we
have independent observations {(Yi, Xi)}

n
i=1, where Yi is the univariate response and Xi is the

p-dimensional vector of covariates (including the intercept, if any). For illustrative purposes,
we consider Xi fixed and do not explicitly distinguish between random and fixed designs. See
Kitamura, Tripathi, and Ahn (2004) for formal methods for models with conditional moment
restrictions. For standard linear regression models, assume that

E[Yi] = µi, VAR[Yi] = σ2
i , i = 1, . . . , n,

where µi = X⊤
i θ0 for some true value θ0 ∈ R

p. Since θ0 minimizes E[(Yi −X⊤
i θ)2], we have

the following moment conditions

E[(Yi −X⊤

i θ)Xi] = 0, i = 1, . . . , n,

and the estimating equations
n∑

i=1

(Yi −X⊤

i θ)Xi = 0.

Let Zi = (Yi, Xi) and g(Zi, θ) = (Yi −X⊤
i θ)Xi. The g(Zi, θ)s are independent with the mean

(µi −X⊤
i θ)Xi and variance σ2

i XiX
⊤
i . Following the steps in Section 2.1, we can compute the

EL ratio function

R(θ) = max
pi

{
n∏

i=1

npi :
n∑

i=1

pig(Zi, θ) = 0, pi ≥ 0,
n∑

i=1

pi = 1

}
. (9)

Under mild moment conditions it follows that l(θ0) →d χ2
p. Note also from Equation 9 that

the least square estimator θ̂ is the MELE of θ, with L(θ̂) = n−n and R(θ̂) = 1.

Next, generalized linear models assume that

E[Yi] = µi, G(µi) = X⊤

i θ, VAR[Yi] = ϕV (µi), i = 1, . . . , n,

where G and V are known link and variance functions, respectively, and ϕ is an optional
dispersion parameter. EL for generalized linear models builds upon quasi-likelihood methods
(Wedderburn 1974). The log quasi-likelihood for Yi is given by

Q(Yi, µi) =

∫ µi

Yi

Yi − t

ϕV (t)
dt.

Differentiating Q(Yi, µi) with respect to θ yields the quasi-score

H ′(X⊤
i θ)

(
Yi −H(X⊤

i θ)
)

ϕV
(
H(X⊤

i θ)
) Xi =: g1(Zi, θ),

where H denotes the inverse link function. From E[g1(Zi, θ0)] = 0 for i = 1, . . . , n, we get the
estimating equations

n∑

i=1

g1(Zi, θ) = 0.

Then the EL ratio function can be derived as in Equation 9 with the same asymptotic prop-
erties. It can be seen that the MELE of θ is the same as the quasi-maximum likelihood
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estimator. When overdispersion is present with unknown ϕ, we introduce another estimating
function based on the squared residuals. Let η = (θ, ϕ) and

g2(Zi, η) =

(
Yi −H(X⊤

i θ)
)2

ϕ2V
(
H(X⊤

i θ)
) −

1

ϕ
, (10)

where E[g2(Zi, η0)] = 0 for some η0 = (θ0, ϕ0). Then the MELE of ϕ is

ϕ̂ =
1

n

n∑

i=1

(
Yi −H(X⊤

i θ̂)
)2

V
(
H(X⊤

i θ̂)
) . (11)

We compute the EL ratio function with this additional constraint as

R(η) = max
pi

{
n∏

i=1

npi :
n∑

i=1

pig1(Zi, η) = 0,
n∑

i=1

pig2(Zi, η) = 0, pi ≥ 0,
n∑

i=1

pi = 1

}
.

The computation is straightforward since the number of parameters equals the number of
constraints on the estimating functions. Confidence regions for θ can be constructed by
applying a calibration method to l(θ). One advantage of using EL for linear models is that
the confidence regions have data-driven shapes and orientations.

2.3. Hypothesis testing with empirical likelihood

As seen in Section 2.2, it is easy to compute the MELE and evaluate the EL ratio function
at a given value for linear models. Conducting significance tests, or hypothesis testing in
general, is often the main interest when using a linear model. The EL method can be nat-
urally extended to testing hypotheses by imposing appropriate constraints on the parameter
space Θ (Qin and Lawless 1995; Adimari and Guolo 2010). Consider a null hypothesis H
corresponding to a nonempty subset of Θ through a smooth q-dimensional function h such
that H = {θ ∈ Θ : h(θ) = 0}. With additional conditions on H and h, it can be shown that

inf
θ:h(θ)=0

l(θ)→d χ2
q (12)

under the null that θ0 ∈ H. In practice, computing the solution in Equation 12 is a non-
trivial task. Recall that the convex hull constraint restricts the domain of l(θ) to Θn :=
{θ ∈ Θ : 0 ∈ Convn(θ)}, where Convn(θ) denotes the convex hull of {g(Zi, θ)}ni=1 with an es-
timating function g. Except for a few cases, both l(θ) and Θn are nonconvex in θ, and fully
identifying Θn can be even more challenging than the constrained minimization problem it-
self. Given that the solution can only be obtained numerically by an iterative process, it is
essential to monitor the entire solution path in Θn ∩H. Another difficulty is in the nested
optimization structure. The Lagrange multiplier λ needs to be updated for each update of
θ, which amounts to solving an inner layer of optimization in Equation 5 at every step. It
is clear that no single method can be applied to all estimating functions and hypotheses.
Tang and Wu (2014) proposed a nested coordinate descent algorithm for general constrained
EL problems, where the outer layer is optimized with respect to θ with λ fixed. After some
algebra, we obtain for θ ∈ Θn the gradient of the EL ratio function

∇ log (R(θ)) = −
1

n

n∑

i=1

1

1 + λ⊤g(Zi, θ)
∂θg(Zi, θ)λ, (13)
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where ∂θg(Zi, θ) represents the Jacobian matrix of g(Zi, θ). Observe that the expression
does not involve any derivatives with respect to λ. In order to reduce the computational
complexity, we focus only on linear hypotheses of the form

H = {θ ∈ Θ : Lθ = r}, (14)

where L is a q×p matrix and r is a q-dimensional vector. We use the projected gradient descent
approach to obtain a local minimum of l(θ) in Equation 12. The projected gradient of l(θ) can
be computed from Equation 13 with the orthogonal projector matrix P = Ip − L⊤(LL⊤)−1L,
where Ip denotes the p × p identity matrix. Then it would take a relatively small number
of iterations for convergence, reducing the required number of inner layer updates of λ. The
pseudo code is shown in Algorithm 1.

Controlling the type 1 error rate is necessary when testing multiple hypotheses simultane-
ously. Recently there has been interest in multiplicity-adjusted test procedures for Wald-
type test statistics that asymptotically have a multivariate chi-square distribution under the
global null hypothesis (Dickhaus and Royen 2015; Dickhaus and Sirotko-Sibirskaya 2019).
Kim, MacEachern, and Peruggia (2023) proposed single-step multiple testing procedures for
EL that asymptotically control the family-wise error rate with Monte Carlo simulations or
bootstrap. Wang and Yang (2018) applied the F -calibrated EL statistics to the Benjamini-
Hochberg procedure (Benjamini and Hochberg 1995) to control the false discovery rate.

3. Overview of melt

The latest stable release of melt is available from the CRAN at https://CRAN.R-project.

org/package=melt. The development version, hosted by the rOpenSci, is on GitHub at
https://github.com/ropensci/melt. Computational tasks are implemented in parallel
using OpenMP (Dagum and Menon 1998) API in C++ with the Rcpp (Eddelbuettel and
Balamuta 2018) and RcppEigen (Bates and Eddelbuettel 2013) packages to interface with
R. Depending on the platform, the package can be compiled from source with support for
OpenMP. The overall design of melt adopts the functional object-oriented programming ap-
proach (Chambers 2014) with S4 classes and methods. Every function in the package is either
a wrapper that creates a single instance of an object or a method that can be applied to a
class object. The workflow of the package consists of three steps: (1) fitting a model, (2)
examining and diagnosing the fitted model, and (3) testing hypotheses with the model. Four
functions are available to build a model object whose names start with the prefix el_, which
stands for empirical likelihood. A summary of the functions is provided below.

• el_mean(): creates an ‘EL’ object for the mean.

• el_sd(): creates a ‘SD’ object for the standard deviation.

• el_lm(): creates an ‘LM’ object for the linear model.

• el_glm(): creates a ‘GLM’ object for the generalized linear model. el_glm() does not
support grouped data.

For univariate data, el_mean() corresponds to t.test() in the stats package. el_lm() and
el_glm() correspond to lm() and glm(), respectively.

https://CRAN.R-project.org/package=melt
https://CRAN.R-project.org/package=melt
https://github.com/ropensci/melt
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Algorithm 1: Constrained empirical likelihood optimization using the projected gradient
descent.
Data: X1, . . . , Xn.
Input : θ0 ∈ Θn ∩H, λ0 = λ(θ0), m (outer layer maximum number of iterations), ϵ

(outer layer convergence tolerance), ml (inner layer maximum number of
iterations), ϵl (inner layer convergence tolerance), and P .

Output: Optimal θ that minimizes l(θ) subject to the constraint H and the
corresponding λ.

1 θ ← θ0; // Assume that the initial value satisfies the constraints

2 λ← λ0;
3 for i← 1 to m do // Outer layer

4 θtemp ← θ;
5 λtemp ← λ;
6 γ ← 2;
7 while l(θtemp) >= l(θ) do

8 γ ← γ/2;
9 ∆← −γP∇l(θ);

10 θtemp ← θ + γ∆;
11 λtemp ← 0;
12 for j ← 1 to ml do // Inner layer

13 ∆l ← −
(
∇2r⋆(λtemp)

)−1
∇r⋆(λtemp);

14 γl ← 1;
15 while r⋆(λtemp + γl∆l) > r⋆(λtemp) do

16 γl ← γl/2;

17 δl ← ∥λtemp∥;
18 λtemp ← λtemp + γl∆l;
19 if ∥γl∆l∥ < ϵlδl + ϵ2

l then

20 break;
21 else

22 j ← j + 1;

23 δ ← ∥θtemp∥;
24 θ ← θtemp;
25 λ← λtemp;
26 if ∥P∇l(θ)∥ < ϵ or ∥γ∆∥ < ϵδ + ϵ2 then

27 break;
28 else

29 i← i + 1;

30 return θ and λ;

All model objects inherit from class ‘EL’, and a description of the slots in ‘EL’ is given in Ta-
ble 1. Notably, the slot optim is a ‘list’ with the following four components that summarize
the optimization results:

• par: a numeric vector for the user-supplied parameter value θ where EL is evaluated.
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Slot Class Description Accessor

optim list Optimization results. getOptim()

logp numeric Log probabilities of empirical likelihood. logProb()

logl numeric(1) Empirical log-likelihood. logL()

loglr numeric(1) Empirical log-likelihood ratio. logLR()

statistic numeric(1) Minus twice the empirical log-likelihood
ratio.

chisq()

df integer(1) Degrees of freedom associated with the
statistic.

getDF()

pval numeric(1) p value of the statistic. pVal()

nobs integer(1) Number of observations. nobs()

weights numeric Re-scaled weights used for model fitting. weights()

coefficients numeric MELE of the parameters. coef()

Table 1: A description of some of the slots in an ‘EL’ object. numeric(1) and integer(1)

refer to a single numeric and integer, respectively. A full explanation of the class and slots
can be found in the documentation of EL-class in the package.

• lambda: a numeric vector for the Lagrange multiplier λ.

• iterations: a single integer for the number of iterations performed.

• convergence: a single logical for the convergence status. It is either TRUE or FALSE.

Note that par is fixed in the evaluation of EL and should not be confused with the MELE,
which is stored in the coefficients slot. The optimization is performed with respect to
lambda, so iterations and convergence need to be understood in terms of lambda. Here
we make a distinction between EL evaluation and EL optimization. The EL optimization
refers to the constrained EL problem discussed in Section 2.3 and corresponds to another class
‘CEL’ that directly extends ‘EL’. The optim slot in a ‘CEL’ object has the same components.
However, the optimization results are now interpreted in terms of par, the solution to the
constrained problem. The ‘LM’ and ‘GLM’ classes contain ‘CEL’, meaning that a constrained
optimization is performed initially when el_lm() or el_glm() is called. In order to avoid
confusion, the ‘CEL’ class only distinguishes EL optimization from EL evaluation, and the
user does not directly interact with a ‘CEL’ object. Instead, the optim slot of every model
object contains a single logical cstr that indicates whether EL optimization is performed
or not. Once par is obtained through evaluation or optimization, it uniquely determines
lambda and, in turn, logl and loglr. Then statistic is equivalent to -2 * loglr and
has an asymptotic chi-square distribution under the null hypothesis, with the associated df

and pval. All four model fitting functions above accept an optional argument weights for
weighted data. A vector of weights is then re-scaled internally for numerical stability in the
computation of weighted EL (Glenn and Zhao 2007). Although weights() and coef() can
extract weights and coefficients, these slots are mainly stored for subsequent analyses
and methods.

In the next step, the following methods can be applied to an object that inherits from ‘EL’ to
evaluate the model fit or compute summary statistics:
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• conv(): extracts convergence status from a model. The distinction between the EL
evaluation and EL optimization applies here as well. It can be used to check the convex
hull constraint indirectly.

• confint(): computes confidence intervals for model parameters.

• confreg(): computes a two-dimensional confidence region for model parameters. It
returns an object of class ‘ConfregEL’ where a subsequent plot() method is applicable.

• eld(): computes empirical likelihood displacement in Equation 8 for model diagnostics
and outlier detection. It returns an object of class ‘ELD’ where a subsequent plot()

method is applicable.

Lastly, we introduce the two main functions of melt that perform hypothesis testing. These
generic methods take an ‘EL’ object with other arguments that specify the problem in Equa-
tion 12.

• elt(): tests a linear hypothesis with EL. It returns an object of class ‘ELT’ that contains
the test statistic, the critical value, and the level of the test. Several calibration options
discussed in Section 2.2 are available, and the p value is computed by the calibration
method chosen.

• elmt(): tests multiple linear hypotheses simultaneously with EL. Each test can be
considered as one instance of elt(), where the marginal test statistic has an asymptotic
chi-square distribution under the corresponding null hypothesis. It returns an object of
class ‘ELMT’ with slots similar to those in ‘ELT’.

An ‘ELT’ object also has the optim slot, which does not necessarily correspond to the EL
optimization. The user can supply an arbitrary parameter value to test, reducing the problem
to the EL evaluation. elmt() applies the single-step multiple testing procedure of Kim et al.
(2023). The multiplicity-adjusted critical value and p values are estimated by Monte Carlo
simulation. All model objects that inherit from ‘EL’, ‘ELT’, and ‘ELMT’ support print() and
summary() methods.

Note that every step of the workflow involves possibly multiple EL evaluations or optimiza-
tions. Hence, it is necessary to flexibly control the details of the execution and computation
at hand. All model fitting functions and most methods accept an optional argument control,
which allows the user to specify the control parameters. Only an object of class ‘ControlEL’
can be supplied as control to ensure validity and avoid unexpected errors. Some of the slots
in ‘ControlEL’ are described in Table 2. This ‘ControlEL’ object is stored in every model
object, so any subsequent method can use those parameters unless the user overwrites them
with new values. Another wrapper, el_control(), is available to construct a ‘ControlEL’
object and specify the parameters. The default values are shown below.

el_control(

maxit = 200L, maxit_l = 25L, tol = 1e-06, tol_l = 1e-06, step = NULL,

th = NULL, verbose = FALSE, keep_data = TRUE, nthreads, seed = NULL,

b = 10000L, m = 1000000L

)
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Slot Class Description

maxit integer(1) Maximum number of iterations for the EL optimization.
maxit_l integer(1) Maximum number of iterations for the EL evaluation.
tol numeric(1) Convergence tolerance for the EL optimization.
tol_l numeric(1) Convergence tolerance for the EL evaluation.
step numeric(1) Step size for projected gradient descent method in the EL

optimization.
th numeric(1) Threshold for the negative empirical log-likelihood ratio.

The iteration stops if the value exceeds the threshold.
nthreads integer(1) Number of threads for parallel computation.

Table 2: A description of some of the slots in an ‘ControlEL’ object. A full explanation of
the class and slots can be found in the documentation of ControlEL-class or el_control()

in the package.

Specifically, nthreads specifies the number of threads for parallel computation via OpenMP
(if available). By default, it is set to half the available threads and affects the following
functions: confint(), confreg(), el_lm(), el_glm(), eld(), and elt(). For better perfor-
mance, it is generally recommended in most platforms to limit the number of threads to the
number of physical cores. seed sets the seed for random number generation. It defaults to
a random integer generated from 1 to the maximum integer supported by R on the machine,
which is determined by set.seed(). For fast parallel random number generation and com-
patibility with OpenMP, the Xoshiro256+ pseudo-random number generator (period 2256−1)
of Blackman and Vigna (2021) is used internally with the dqrng package (Stubner 2021).

4. Usage

4.1. Model building

For a simple illustration of building a model, we apply el_mean() to the synthetic classifica-
tion problem data synth.tr from the MASS package (Venables and Ripley 2002). synth.tr

is a ‘data.frame’ with 250 rows and three columns. We select two columns xs and ys, the x
and y coordinates, to build an EL model with two-dimensional mean parameter. The result-
ing ‘data.frame’ is denoted by data. The dplyr package (Wickham, François, Henry, and
Müller 2023) and the ggplot2 package (Wickham 2016) are used to aid data manipulation
and visualization.

R> library("melt")

R> library("MASS")

R> library("dplyr")

R> library("ggplot2")

R> data("synth.tr", package = "MASS")

R> data <- dplyr::select(synth.tr, c(xs, ys))

With the focus on xs and ys, we first visualize the domain of the EL function with the convex
hull constraint in Figure 1. Any parameter value inside the convex hull leads to proper EL
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Figure 1: Scatter plot of ys versus xs in the synth.tr. The convex hull of the observations
is shaded in grey.

evaluation. We specify c(0, 0.5) as par in el_mean() and build an ‘EL’ object with the
data.

R> fit_mean <- el_mean(data, par = c(0, 0.5))

data is implicitly coerced into a ‘matrix’ since el_mean() takes a numeric ‘matrix’ as an
input for the data. Basic print() and show() methods display relevant information about
an ‘EL’ object.

R> fit_mean

Empirical Likelihood

Model: mean

Maximum EL estimates:

xs ys

-0.0728 0.5044

Chisq: 6.16, df: 2, Pr(>Chisq): 0.046

EL evaluation: converged

The asymptotic chi-square statistic is displayed, along with the associated degrees of freedom
and the p value. The coef() method extracts the MELE, which can be easily computed in this
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case by using colMeans(data). We note that the MELE is computed independently of the
par specified by the user. Knowing the MELE makes it straightforward for the user to build a
model with any valid par when the user is more interested in a subsequent application of elt()

or elmt() to the fitted ‘EL’ object. We can also specify an arbitrary weight in el_mean() for
weighted EL evaluation. Then the MELE is the weighted average of the observations. The
re-scaled weights returned by weights() add up to the total number of observations.

Next, we consider an infeasible parameter value c(1, 0.5) outside the convex hull to show
how el_control() interacts with the model fitting functions through control argument. By
employing the pseudo logarithm function in Equation 6, the evaluation algorithm continues
until the iteration reaches maxit_l or the negative empirical log-likelihood ratio exceeds th.
Setting a large th for the infeasible value, we observe that the algorithm hits the maxit with
each element of lambda diverging quickly.

R> ctrl <- el_control(maxit_l = 50, th = 10000)

R> fit4_mean <- el_mean(data, par = c(1, 0.5), control = ctrl)

R> logL(fit4_mean)

[1] -10001

R> logLR(fit4_mean)

[1] -8621

R> getOptim(fit4_mean)

$par

xs ys

1.0 0.5

$lambda

[1] -9.909e+14 2.757e+14

$iterations

[1] 50

$convergence

[1] FALSE

$cstr

[1] FALSE

We generate a surface plot of the empirical log-likelihood ratio on the grid of Figure 1. The
boundary of the convex hull separates the feasible region from the infeasible region in Figure 2.

A similar process applies to the other model fitting functions, except that el_lm() and
el_glm() require a ‘formula’ object for model specification. In addition, melt contains
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Figure 2: Surface plot of empirical log-likelihood ratio obtained from synth.tr with
el_mean(). th is set to 400.

another function el_eval() to perform the EL evaluation for other general estimating func-
tions. For example, consider the mean and standard deviation denoted by θ = (µ, σ). For
a given value of θ, we evaluate the estimating function g(Xi, θ) = (Xi − µ, (Xi − µ)2 − σ2)
with the available data X1, . . . , Xn. el_eval() takes a ‘matrix’ argument g, where each row
corresponds to g(Xi, θ).

R> mu <- 0

R> sigma <- 1

R> set.seed(123526)

R> x <- rnorm(100)

R> g <- matrix(c(x - mu, (x - mu)^2 - sigma^2), ncol = 2)

R> fit_eval <- el_eval(g)

R> fit_eval$pval

[1] 0.4646

Although the user can supply a custom g, el_eval() is not the main function of the package.
el_eval() returns a ‘list’ with the same components as in an ‘EL’ object, but no other
methods are applicable further. The scope is also limited to just-identified estimating func-
tions. For more flexible and over-identified estimating functions, it is recommended to use
other packages, e.g., gmm or momentfit.

4.2. Linear regression analysis
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We illustrate the use of el_lm() for regression analysis with the crime rates data UScrime

available in MASS. Here we update the control parameters for significance tests of the coef-
ficients.

R> data("UScrime", package = "MASS")

R> ctrl <- el_control(maxit = 1000, nthreads = 2)

R> (fit_lm <- el_lm(y ~ Pop + Ineq, data = UScrime, control = ctrl))

Empirical Likelihood

Model: lm

Maximum EL estimates:

(Intercept) Pop Ineq

1046.75 3.25 -1.34

Chisq: 14, df: 2, Pr(>Chisq): 0.000933

Constrained EL: converged

The print() method also applies and shows the MELE, the overall model test result, and the
convergence status. The estimates are obtained from lm.fit(). The hypothesis for the overall
test is that all the parameters except the intercept are 0. The convergence status shows that
a constrained optimization is performed in testing the hypothesis. The EL evaluation applies
to the test and the convergence status if the model does not include an intercept. conv() can
be used to extract the convergence status. It is designed to return a single logical, which can
be helpful in a control flow where the convergence status decides the course of action. The
large chi-square value above implies that the data do not support the hypothesis, regardless
of the convergence. Note that failure to converge does not necessarily indicate unreliable test
results. Most commonly, the algorithm fails to converge if the additional constraint imposed
by a hypothesis is incompatible with the convex hull constraint. The control parameters affect
the test results as well. The summary() method reports more details, such as the results of
significance tests, where each test involves solving a constrained EL problem.

R> summary(fit_lm)

Empirical Likelihood

Model: lm

Call:

el_lm(formula = y ~ Pop + Ineq, data = UScrime, control = ctrl)

Number of observations: 47

Number of parameters: 3

Parameter values under the null hypothesis:

(Intercept) Pop Ineq
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1047 0 0

Lagrange multipliers:

[1] 3.50e-03 1.42e-05 -2.62e-05

Maximum EL estimates:

(Intercept) Pop Ineq

1046.75 3.25 -1.34

logL: -188 , logLR: -6.98

Chisq: 14, df: 2, Pr(>Chisq): 0.000933

Constrained EL: converged

Coefficients:

Estimate Chisq Pr(>Chisq)

(Intercept) 1046.75 447.64 < 2e-16 ***

Pop 3.25 4.93 0.02647 *

Ineq -1.34 13.65 0.00022 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

These tests are all asymptotically pivotal without explicit studentization. As a result, the
output does not have standard errors.

By iteratively solving constrained EL problems for a grid of parameter values, confidence
intervals for the parameters can be calculated with confint(). The chi-square calibration
is the default, but the user can specify a critical value cv optionally. Below we calculate
asymptotic 95% confidence intervals.

R> confint(fit_lm)

lower upper

(Intercept) 579.7584 1698.9193

Pop 0.3492 6.3530

Ineq -1.9453 -0.6872

Without standard errors and vcov() methods, the lower and upper confidence limits do
not necessarily correspond to 2.5 and 97.5 percentiles, respectively. Similarly, we obtain
confidence regions for two parameters with confreg(). Starting from the MELE, it computes
the boundary points of a confidence region in full circle. An optional argument npoints

controls the number of boundary points. The return value is a ‘ConfregEL’ object containing
a matrix whose rows consist of the points, and the plot() method visualizes the confidence
region (Figure 3).

R> cr <- confreg(fit_lm, parm = c("Pop", "Ineq"), npoints = 200)

R> plot(cr, cex = 1.5, cex.axis = 1.5, cex.lab = 1.5, lwd = 2, tck = -0.01)

Finally, we apply eld() to detect influential observations and outliers. Aside from the model
object, eld() only accepts the control parameters. By the leave-one-out method of ELD, an
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Figure 3: Scatter plot of the boundary points for asymptotic 95% confidence region of Pop

and Ineq in fit_lm. At the center of the plot is the MELE θ̂.

‘ELD’ object inherits from the base type ‘numeric’, with the length equal to the number of
observations in the data. Figure 4 shows the ELD values from the plot() method.

R> eld <- eld(fit_lm)

R> summary(eld)

R> plot(eld,

+ cex = 1.5, cex.axis = 1.5, cex.lab = 1.5, lwd = 2, pch = 19, tck = -0.01

+ )

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00 0.19 1.31 4.03 3.55 42.47

The code below shows that the observation with the largest ELD also has the largest Cook’s
distance from the same linear model fitted by lm().

R> fit2_lm <- lm(y ~ Pop + Ineq, data = UScrime)

R> cd <- cooks.distance(fit2_lm)

R> all.equal(which.max(eld), which.max(cd), check.attributes = FALSE)

[1] TRUE

4.3. Hypothesis testing

Now we consider elt() for hypothesis testing, with the function prototype given below.
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Figure 4: Scatter plot of empirical likelihood displacement versus observation index in
fit_lm. The 4th observation has the largest value.

elt(object,

rhs = NULL, lhs = NULL, alpha = 0.05, calibrate = "chisq", control = NULL

)

Arguments rhs and lhs define a linear hypothesis and correspond to r and L in Equation 14,
respectively. Therefore, either one or the other must be provided. The argument lhs takes a
numeric matrix or a vector. Alternatively, a character vector can be supplied to symbolically
specify a hypothesis, which is convenient when there are many variables. When lhs is NULL,
it performs the EL evaluation at θ = r by setting L = Ip, where Ip is the identity matrix of
order p. When rhs is NULL, on the other hand, r is set to the zero vector automatically, and
the EL optimization is performed with L. Technically, elt() can reproduce the test results
from fit_mean in Section 4.1 and fit_lm in Section 4.2. Note the equivalence between the
optimization results.

R> elt_mean <- elt(fit_mean, rhs = c(0, 0.5))

R> all.equal(getOptim(elt_mean), getOptim(fit_mean))

[1] TRUE

R> elt_lm <- elt(fit_lm, lhs = c("Pop", "Ineq"))

R> all.equal(getOptim(elt_lm), getOptim(fit_lm))

[1] TRUE
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In addition to specifying an arbitrary linear hypothesis through rhs and lhs, extra argu-
ments alpha and calibrate expand options for testing. alpha controls the significance level
determining the critical value, and calibrate chooses the calibration method. critVal()

extracts the critical value from an ‘ELT’ object.

R> critVal(elt_mean)

[1] 5.991

We apply the F and bootstrap calibrations to fit_mean at a significance level of 0.05. The
number of threads is increased to four with 100000 bootstrap replicates in el_control().

R> ctrl <- el_control(

+ maxit = 10000, tol = 1e-04, nthreads = 4, b = 100000, step = 1e-05

+ )

R> (elt_mean_f <- elt(fit_mean,

+ rhs = c(0, 0.5), calibrate = "F", control = ctrl

+ ))

Empirical Likelihood Test

Hypothesis:

xs = 0.0

ys = 0.5

Significance level: 0.05, Calibration: F

Statistic: 6.16, Critical value: 6.09

p-value: 0.0484

EL evaluation: converged

R> (elt_mean_boot <- elt(fit_mean,

+ rhs = c(0, 0.5), calibrate = "boot", control = ctrl

+ ))

Empirical Likelihood Test

Hypothesis:

xs = 0.0

ys = 0.5

Significance level: 0.05, Calibration: Bootstrap

Statistic: 6.16, Critical value: 6.06

p-value: 0.0476

EL evaluation: converged



Eunseop Kim, Steven N. MacEachern, and Mario Peruggia 21

The above output shows that the F and bootstrap calibrations tend to produce slightly larger
critical values than the chi-square calibration. These values can be used as the cv argument
in confint() and confreg(), improving coverage probabilities when the sample size is small.

Next, we compare elt() with lht() in car that computes an asymptotic chi-square statistic
from Wald tests. The two functions have similar syntax with comparable outputs. For
illustration, we fit a logistic regression model to the U.S. women’s labor-force participation
data Mroz from the carData package (Fox, Weisberg, and Price 2022) with el_glm() and
glm(). We include all variables of carData in the model with the binary response variable
lfp, which stands for labor-force participation. See the documentation of carData for a
detailed description of the variables.

R> library("car")

R> data("Mroz", package = "carData")

R> fit_glm <- el_glm(lfp ~ .,

+ family = binomial(link = "logit"), data = Mroz, control = ctrl

+ )

R> fit2_glm <- glm(lfp ~ ., family = binomial(link = "logit"), data = Mroz)

Asymptotic 95% confidence intervals from confint() can be compared with the ones from
confint.glm() in the MASS package.

R> matrix(c(confint(fit_glm), confint(fit2_glm)),

+ ncol = 4, dimnames = list(

+ c(names(coef(fit2_glm))),

+ c("EL_lower", "EL_upper", "MASS_2.5%", "MASS_97.5%")

+ )

+ )

EL_lower EL_upper MASS_2.5% MASS_97.5%

(Intercept) 2.27606 4.09139 1.9370 4.46631

k5 -1.79757 -1.14646 -1.8609 -1.08747

k618 -0.18119 0.05263 -0.1984 0.06867

age -0.07024 -0.05535 -0.0883 -0.03814

wcyes 0.41881 1.20724 0.3610 1.26378

hcyes -0.23781 0.46629 -0.2920 0.51679

lwg 0.32517 0.91532 0.3140 0.90698

inc -0.04985 -0.01970 -0.0510 -0.01877

We employ coef() to extract only the results of significance tests from the output of summary().

R> coef(summary(fit_glm))

Estimate Chisq Pr(>Chisq)

(Intercept) 3.18214 539.769 2.116e-119

k5 -1.46291 85.631 2.169e-20

k618 -0.06457 1.174 2.785e-01

age -0.06287 544.866 1.648e-120



22 melt: Multiple Empirical Likelihood Tests in R

wcyes 0.80727 16.705 4.366e-05

hcyes 0.11173 0.402 5.261e-01

lwg 0.60469 19.768 8.743e-06

inc -0.03445 22.996 1.624e-06

Based on the estimates and p values above, we test two hypotheses that involve different
classes of lhs: 1) wc = hc and 2) k5 = −1.5 and k618 = 0. Wald tests are performed by
specifying test = "Chisq" in lht().

R> lhs <- c(0, 0, 0, 0, 1, -1, 0, 0)

R> elt_glm <- elt(fit_glm, lhs = lhs)

R> lht_glm <- lht(fit2_glm, hypothesis.matrix = lhs, test = "Chisq")

R> lhs2 <- rbind(

+ c(0, 1, 0, 0, 0, 0, 0, 0),

+ c(0, 0, 1, 0, 0, 0, 0, 0)

+ )

R> rhs2 <- c(-1.5, 0)

R> elt2_glm <- elt(fit_glm, rhs = rhs2, lhs = lhs2)

R> lht2_glm <- lht(fit2_glm,

+ hypothesis.matrix = lhs2, rhs = rhs2, test = "Chisq"

+ )

For comparison, we extract the chi-square statistics and p values using chisq() and pVal().
The results are presented below.

R> matrix(

+ c(

+ chisq(elt_glm), pVal(elt_glm),

+ lht_glm$Chisq[2], lht_glm$`Pr(>Chisq)`[2]

+ ),

+ nrow = 2, byrow = TRUE,

+ dimnames = list(c("EL", "Wald"), c("Chisq", "Pr(>Chisq)"))

+ )

Chisq Pr(>Chisq)

EL 3.634 0.05660

Wald 3.536 0.06004

R> matrix(

+ c(

+ chisq(elt2_glm), pVal(elt2_glm),

+ lht2_glm$Chisq[2], lht2_glm$`Pr(>Chisq)`[2]

+ ),

+ nrow = 2, byrow = TRUE,

+ dimnames = list(c("EL", "Wald"), c("Chisq", "Pr(>Chisq)"))

+ )
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Chisq Pr(>Chisq)

EL 1.144 0.5643

Wald 1.011 0.6032

The two tests provide similar results with a sample size of 753, which is not surprising given
the asymptotic equivalence between these tests (see Qin and Lawless (1995) and references
therein).

5. Case study

This section presents a more in-depth data analysis using EL with an internal dataset of
melt, thiamethoxam, from Obregon, Pederson, Taylor, and Poveda (2022). Thiamethoxam
is a widely used neonicotinoid pesticide that translocates through plants, leaving residues in
crops. Since pesticides can also affect non-target organisms such as pollinators, it is important
to maintain a balance between pest management and pollinator protection to maximize crop
yield. Obregon et al. (2022) aimed to test how different application methods of thiamethoxam
and plant variety impact pest control, bee visits, yield, and pesticide residues in flowers of
squash crops. Squash crops rely on bee pollination to yield fruits (Knapp and Osborne 2019),
and the striped cucumber beetle is the major pest for squash crops (Haber, Wallingford,
Grettenberger, Ramirez Bonilla, Vinchesi-Vahl, and Weber 2021). Obregon et al. (2022)
conducted a field experiment with two varieties that differ in their attractiveness to striped
cucumber beetles: (1) Golden Zucchini (preferred by the beetle) and (2) Success PM straight-
neck summer squash (not preferred by the beetle). Also, the following four thiamethoxam
application methods were used: (1) in-furrow application after sowing, (2) foliar spray appli-
cation three weeks after sowing, (3) seed treatment, and (4) no insecticides. Specifically, a
quasi-Poisson regression model with a log link function was fit to examine the effects of plant
variety and thiamethoxam application methods on the number of bee visits. The statistical
significance of each variable was also tested, followed by Tukey HSD posthoc tests with the
agricolae package (de Mendiburu 2021) for pairwise comparisons among the plant varieties
and the application methods.

Following the original approach of Obregon et al. (2022), our goal is to conduct relevant
tests with EL, focusing on performing multiple comparisons and constructing simultaneous
confidence intervals. First, thiamethoxam is a ‘data.frame’ with 165 observations and 11
variables. A summary of thiamethoxam is provided below.

R> data("thiamethoxam")

R> summary(thiamethoxam)

trt var rep fruit avg_mass

None :41 SPM:82 1:24 Min. : 1.00 Min. :102

Spray :40 GZ :83 2:24 1st Qu.: 4.00 1st Qu.:236

Furrow:42 3:21 Median : 5.75 Median :310

Seed :42 4:24 Mean : 6.11 Mean :330

5:24 3rd Qu.: 7.25 3rd Qu.:401

6:24 Max. :13.00 Max. :724

7:24
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mass yield visit foliage

Min. : 987 Min. : 2778 Min. : 0.75 Min. :0.00014

1st Qu.: 2751 1st Qu.: 7191 1st Qu.: 5.75 1st Qu.:0.00106

Median : 5729 Median :11998 Median : 8.25 Median :0.00274

Mean : 6638 Mean :13465 Mean : 8.70 Mean :0.00980

3rd Qu.: 9673 3rd Qu.:17418 3rd Qu.:11.00 3rd Qu.:0.01199

Max. :16016 Max. :34790 Max. :23.50 Max. :0.07131

scb defoliation

Min. : 0.125 Min. : 0.00

1st Qu.: 1.250 1st Qu.: 0.75

Median : 1.938 Median : 2.13

Mean : 2.772 Mean : 7.72

3rd Qu.: 3.125 3rd Qu.:12.50

Max. :22.875 Max. :48.75

NA's :3

trt and var are ‘factor’ variables for the application methods and the plant varieties, re-
spectively. visit denotes the number of bee visits per plot. The ridgeline plot in Figure 5
created by the ggridges package (Wilke 2022) shows distinct distributions of visit by trt

and var. Note that the ranges of visit differ by trt. The seed treatment (Seed) records
the largest number of visits among the methods compared to no treatment (None). As for
the variety, Success PM (SPM) tends to have a larger number of visits than Golden Zucchini
(GZ). Considering visit as our response variable, we also include fruit (average fruit num-
ber per plant) and defoliation (percentage defoliation) in our model as numeric variables.
Particularly, Obregon et al. (2022) conducted a path analysis with the piecewiseSEM package
(Lefcheck 2016), showing that the percentage defoliation significantly reduces the number of
visits.

Next, we fit a quasi-Poisson regression model with a log link function using el_glm() to
obtain a ‘QGLM’ model object.

R> fit3_glm <- el_glm(visit ~ trt + var + fruit + defoliation,

+ family = quasipoisson(link = "log"), data = thiamethoxam,

+ control = ctrl

+ )

R> print(summary(fit3_glm), width.cutoff = 50)

Empirical Likelihood

Model: glm (quasipoisson family with log link)

Call:

el_glm(formula = visit ~ trt + var + fruit + defoliation,

family = quasipoisson(link = "log"), data = thiamethoxam,

control = ctrl)

Number of observations: 165
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Figure 5: Ridgeline plot showing the densities of the number of bee visits (visit), grouped
by the application methods (trt) and plant varieties(var). Solid red and dashed blue lines
correspond to Golden Zucchini (GZ) and Success PM (SPM), respectively. Rugs show jittered
data points.

Number of parameters: 7

Parameter values under the null hypothesis:

(Intercept) trtSpray trtFurrow trtSeed varGZ

1.97 0.00 0.00 0.00 0.00

fruit defoliation phi

0.00 0.00 1.73

Lagrange multipliers:

[1] -0.2032 -0.1863 0.0183 0.1450 -0.1746 0.1096 -0.0487 -0.0877

Maximum EL estimates:

(Intercept) trtSpray trtFurrow trtSeed varGZ

1.9723 -0.1128 0.0800 0.3179 -0.2109

fruit defoliation

0.0514 -0.0204

logL: -910 , logLR: -67.2

Chisq: 134, df: 6, Pr(>Chisq): <2e-16

Constrained EL: converged

Coefficients:
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Estimate Chisq Pr(>Chisq)

(Intercept) 1.9723 421.87 < 2e-16 ***

trtSpray -0.1128 1.68 0.19489

trtFurrow 0.0800 1.01 0.31404

trtSeed 0.3179 11.95 0.00055 ***

varGZ -0.2109 9.50 0.00206 **

fruit 0.0514 14.47 0.00014 ***

defoliation -0.0204 27.15 1.9e-07 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Dispersion for quasipoisson family: 1.726

The dispersion estimate corresponds to ϕ̂ in Equation 11. This estimate is smaller than the
one obtained from summary() when applied to a ‘glm’ object because the denominator in
Equation 11 is n instead of n− p. The solution to the constrained EL problem also includes
phi, which is not part of the overall model constraint. Both fruit and defoliation are
significant, although the estimates are smaller than other variables. With only the level Seed

being significant in trt, we assess the significance of trt by testing whether the coefficients
are all zero. The output of summary() reports a small p value with a different solution from
the overall model test.

R> elt2_glm <- elt(fit3_glm, lhs = c("trtSpray", "trtFurrow", "trtSeed"))

R> summary(elt2_glm)

Empirical Likelihood Test

Hypothesis:

trtSpray = 0

trtFurrow = 0

trtSeed = 0

Significance level: 0.05, Calibration: Chi-square

Parameter values under the null hypothesis:

(Intercept) trtSpray trtFurrow trtSeed varGZ

1.9732 0.0000 0.0000 0.0000 -0.2102

fruit defoliation phi

0.0596 -0.0254 1.7270

Lagrange multipliers:

[1] -0.09787 -0.15872 0.12336 0.25170 0.00985 -0.00207 0.00769

[8] 0.02068

logL: -850, logLR: -7.34

Statistic: 14.7, Critical value: 7.81

p-value: 0.00211

Constrained EL: converged
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Finally, we extend the hypothesis testing framework of Section 4.3 to multiple testing with
elmt(), which can be directly applied to the fitted model object. Its syntax is similar to
elt(), where rhs and lhs now specify multiple hypotheses.

elmt(object, rhs = NULL, lhs = NULL, alpha = 0.05, control = NULL)

For general hypotheses involving separate matrices, elmt() accepts ‘list’ objects for rhs

and lhs. The corresponding elements of rhs and lhs together form a hypothesis, as in
Equation 14. elmt() employs a multivariate chi-square calibration technique based on Monte
Carlo simulations to determine the common critical value. Details of multiple testing pro-
cedures are given in Kim et al. (2023). Continuing on the previous test result, we perform
comparisons with the control, which is our primary interest. We set the overall significance
level at 0.05.

R> elmt_glm <- elmt(fit3_glm, lhs = list("trtSpray", "trtFurrow", "trtSeed"))

R> summary(elmt_glm)

Empirical Likelihood Multiple Tests

Overall significance level: 0.05

Calibration: Multivariate chi-square

Hypotheses:

Estimate Chisq Df p.adj

trtSpray = 0 -0.113 1.68 1 0.4635

trtFurrow = 0 0.080 1.01 1 0.6625

trtSeed = 0 0.318 11.95 1 0.0016 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Common critical value: 5.66

Note the use of a ‘list’ for lhs by elmt(). While a character vector lhs acts as a single
hypothesis for elt(), elements of lhs in elmt() define distinct hypotheses for convenience.
The Df column shows the marginal chi-square degrees of freedom for each hypothesis.

Further, we compare the result with the output of glht() in multcomp. glht() relies on
(asymptotic) multivariate normal and t distributions for simultaneous tests.

R> library("multcomp")

R> fit4_glm <- glm(visit ~ trt + var + fruit + defoliation,

+ family = quasipoisson(link = "log"), data = thiamethoxam,

+ )

R> fit4_glm$call <- NULL

R> glht_glm <- glht(fit4_glm,

+ linfct = mcp(trt = c("Spray = 0", "Furrow = 0", "Seed = 0"))

+ )

R> summary(glht_glm)
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Simultaneous Tests for General Linear Hypotheses

Multiple Comparisons of Means: User-defined Contrasts

Linear Hypotheses:

Estimate Std. Error z value Pr(>|z|)

Spray == 0 -0.113 0.124 -0.91 0.6995

Furrow == 0 0.080 0.111 0.72 0.8224

Seed == 0 0.318 0.103 3.10 0.0057 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Adjusted p values reported -- single-step method)

For the hypothesis Seed vs. None, the adjusted p values are 0.00243 for elmt() and 0.00563
for glht(). Both procedures reject this hypothesis at the overall level of 0.05 and conclude
that only the seed treatment is significantly different from the control. Since each hypothesis
conforms to a linear combination of the parameters, confint() can be applied to produce
asymptotic 95% simultaneous confidence intervals. For an object of class ‘ELMT’, confint()

uses the common critical value computed by elmt(). Below we give the intervals from the
two procedures.

R> confint(elmt_glm)

lower upper

trtSpray = 0 -0.3689 0.08084

trtFurrow = 0 -0.1141 0.26524

trtSeed = 0 0.1041 0.51379

R> glht_sci <- confint(glht_glm)$confint

R> attributes(glht_sci)[c("calpha", "conf.level")] <- NULL

R> glht_sci

Estimate lwr upr

Spray -0.11281 -0.40521 0.1796

Furrow 0.08001 -0.18256 0.3426

Seed 0.31794 0.07583 0.5601

6. Conclusion

Empirical likelihood enables a likelihood-driven style of inference without the restrictive dis-
tributional assumptions of parametric models. Perhaps more importantly, while being non-
parametric, empirical likelihood retains some desirable properties of parametric likelihood.
In many ways, it is an attractive and natural approach to estimation and hypothesis testing,
but its use has been limited due to computational difficulties compared to other methods.



Eunseop Kim, Steven N. MacEachern, and Mario Peruggia 29

The R package melt aims to bridge the gap and provide a unified framework for data analysis
with empirical likelihood methods. The package is developed to conduct statistical infer-
ence routinely made in R with empirical likelihood. Mainly, hypothesis testing is available
for various models with smooth estimating functions. Examples in this paper demonstrate
the functionality of melt. We provide more examples and details on the package website
https://docs.ropensci.org/melt/. Future work will focus on expanding the scope to ad-
ditional estimating functions and models. The package structure and its adoption of S4 classes
and methods are designed for extensibility. Optimization algorithms tailored to specific mod-
els can also be added in the process.
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