GDAL Utility Functions for R

Project Status: Active - The project has reached a stable, usable state and is being actively developed. License CRAN RStudio mirror downloads

The R package sf ships with self-contained GDAL executables, including a bare bones interface to several of the GDAL-related utility programs collectively known as the GDAL utilities (the full set of which are documented here). For each of those utilities, this package provides an R wrapper whose formal arguments closely mirror those of the GDAL command line interface.

The R functions in this package mirror, as closely possible, the utilities to which they provide interfaces. Each function has the same name as its corresponding command-line utility, takes the same arguments and, given the same inputs and arguments, produces identical output. All of the GDAL utilities operate on data stored in files and typically write their output directly to other files. As a result, processing data stored in any of R’s more common spatial formats (i.e. those supported by the sp, sf, and raster packages) will require first writing to disk, then processing with the package’s wrapper functions before reading back into R.


To install the development version from GitHub, run:



Translating a GDAL command-line call into the equivalent R call is, in most cases, a straightforward excercise. To do so, just follow these basic rules:

  1. Argument names: In general, the name of the R argument corresponding to a GDAL utility’s command line flag is gotten by removing the - or -- from the flag. So, for instance, in a call to gdalUtilities::gdal_translate(), the command line flags -projwin_srs and --config become the formal arguments projwin_srs and config. The single exception is the command-line flag -3d, an option for gdal_rasterize, which is represented by the formal argument threeD in its R equivalent (R arguments not being allowed to start with a digit).

  2. Character and numeric arguments: Flags that are followed by one or more character strings or numbers may be specified by passing either a character or numeric vector to the corresponding formal argument. So, for example, to shrink the size of the raster "in.tif" by 50% in each dimension, outputting the result as "out.tif", you could do:

    gdal_translate("in.tif", "out.tif", outsize = c("50%","50%"))
  3. Logical arguments: Many flags are logical, specifying options that are turned on when they are present, and not when they are absent. In the equivalent R functions (as in their corresponding GDAL utilities) these options are all off by default, and can be turned on by setting them to TRUE. In gdal_rasterize, for instance, one can ‘invert’ a rasterization, burning in a new value on all pixels not covered by a vector feature, by adding the flag -i. With the equivalent R function, the same action would be triggered by setting i=TRUE.

  4. Repeatable arguments: Several GDAL utilities take one or a few flags that are potentially ‘repeatable’. gdal_translate, for example, allows users to add ground control points to a raster layer, an operation accomplished by prepending each ground control point’s coordinates with the flag -gcp. R, however, does not allow repeated arguments, so repeated instances of a flag need instead to be passed in as rows of a matrix. To add four ground control points to a raster using gdal_translate(), for example, you would do something like the following:

    ## Four column matrix supplying: column, row, x-coord, y-coord
    gcps <- matrix(c(0,  100, 174.761, -36.880,  ## lower-left
                     73,   0, 174.769, -36.871,  ## upper-right
                     73, 100, 174.769, -36.880,  ## lower-right
                      0,   0, 174.761, -36.871), ## upper-left
                   ncol = 4, byrow = TRUE)
    in_tif <- "maunga.tif"
    gcp_tif <- "maunga_gcp.tif"
    gdal_translate(in_tif, gcp_tif, gcp = gcps, a_srs = "EPSG:4326")
  5. Checking call using dryrun = TRUE: As a quick check that one’s call to an R function corresponds to the desired command-line equivalent, one can set dryrun = TRUE.

    gdal_translate("in.tif", "out.tif", outsize = c("50%","50%"), dryrun = TRUE)
    ## [1] "gdal_translate in.tif out.tif -outsize 50% 50%"
    gdal_translate(in_tif, gcp_tif, gcp = gcps, a_srs = "EPSG:4326", dryrun=TRUE)
    ## gdal_translate maunga.tif maunga_gcp.tif -a_srs EPSG:4326 \
    ## -gcp 0 100 174.761 -36.88 -gcp 73 0 174.769 -36.871 \
    ## -gcp 73 100 174.769 -36.88 -gcp 0 0 174.761 -36.871

Comparison to gdalUtils package

Jonathan Greenberg’s gdalUtils package has long provided functionality very much like gdalUtilities, with one important caveat. Unlike the current package, gdalUtils requires that an independent local system installation of GDAL already be in place. (It works, in essence, by constructing system calls to GDAL, which it then farms out via calls to the R function system().) gdalUtilities, by constrast, sidesteps any dependence on an additional external program. It does so by constructing calls to the R function sf::gdal_utils() which provides a raw interface to GDAL binaries that are bundled together as part of the R package sf.

Supported GDAL utilities

At present, sf::gdal_utils() (and thus the gdalUtilities package) provides bindings for only a subset of the GDAL utilities. A list of the supported utilities, followed by those that are not supported, are given below:

GDAL utilities provided by this package

## Supported 'GDAL Utility Programs'

## Supported 'OGR Utility Programs'

GDAL utilities not provided by this package

## Unsupported 'GDAL Utility Programs'

## Unsupported 'OGR Utility Programs'