bayesianVARs: MCMC Estimation of Bayesian Vectorautoregressions

Efficient Markov Chain Monte Carlo (MCMC) algorithms for the fully Bayesian estimation of vectorautoregressions (VARs) featuring stochastic volatility (SV). Implements state-of-the-art shrinkage priors following Gruber & Kastner (2023) <doi:10.48550/arXiv.2206.04902>. Efficient equation-per-equation estimation following Kastner & Huber (2020) <doi:10.1002/for.2680> and Carrerio et al. (2021) <doi:10.1016/j.jeconom.2021.11.010>.

Version: 0.1.3
Depends: R (≥ 3.3.0)
Imports: colorspace, factorstochvol (≥ 1.1.0), GIGrvg (≥ 0.7), graphics, MASS, mvtnorm, Rcpp (≥ 1.0.0), scales, stats, stochvol (≥ 3.0.3), utils
LinkingTo: factorstochvol, Rcpp, RcppArmadillo, RcppProgress, stochvol
Suggests: coda, knitr, rmarkdown, testthat (≥ 3.0.0)
Published: 2024-06-25
DOI: 10.32614/CRAN.package.bayesianVARs
Author: Luis Gruber ORCID iD [cph, aut, cre], Gregor Kastner ORCID iD [ctb]
Maintainer: Luis Gruber <Luis.Gruber at>
License: GPL (≥ 3)
NeedsCompilation: yes
Materials: README NEWS
In views: TimeSeries
CRAN checks: bayesianVARs results


Reference manual: bayesianVARs.pdf
Vignettes: Shrinkage Priors for Bayesian Vectorautoregressions featuring Stochastic Volatility Using the **R** Package **bayesianVARs**


Package source: bayesianVARs_0.1.3.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): bayesianVARs_0.1.3.tgz, r-oldrel (arm64): bayesianVARs_0.1.3.tgz, r-release (x86_64): bayesianVARs_0.1.3.tgz, r-oldrel (x86_64): bayesianVARs_0.1.3.tgz
Old sources: bayesianVARs archive


Please use the canonical form to link to this page.