SeBR: Semiparametric Bayesian Regression Analysis

Monte Carlo and MCMC sampling algorithms for semiparametric Bayesian regression analysis. These models feature a nonparametric (unknown) transformation of the data paired with widely-used regression models including linear regression, spline regression, quantile regression, and Gaussian processes. The transformation enables broader applicability of these key models, including for real-valued, positive, and compactly-supported data with challenging distributional features. The samplers prioritize computational scalability and, for most cases, Monte Carlo (not MCMC) sampling for greater efficiency. Details of the methods and algorithms are provided in Kowal and Wu (2023) <arXiv:2306.05498>.

Version: 1.0.0
Imports: fields, GpGp, MASS, quantreg, spikeSlabGAM, statmod
Suggests: knitr, rmarkdown
Published: 2023-07-03
Author: Dan Kowal ORCID iD [aut, cre, cph]
Maintainer: Dan Kowal <daniel.r.kowal at>
License: MIT + file LICENSE
NeedsCompilation: no
Materials: README NEWS
CRAN checks: SeBR results


Reference manual: SeBR.pdf
Vignettes: Introduction to SeBR


Package source: SeBR_1.0.0.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release (arm64): SeBR_1.0.0.tgz, r-oldrel (arm64): SeBR_1.0.0.tgz, r-release (x86_64): SeBR_1.0.0.tgz, r-oldrel (x86_64): SeBR_1.0.0.tgz


Please use the canonical form to link to this page.