BayesPostEst: Generate Postestimation Quantities for Bayesian MCMC Estimation

An implementation of functions to generate and plot postestimation quantities after estimating Bayesian regression models using Markov chain Monte Carlo (MCMC). Functionality includes the estimation of the Precision-Recall curves (see Beger, 2016 <doi:10.2139/ssrn.2765419>), the implementation of the observed values method of calculating predicted probabilities by Hanmer and Kalkan (2013) <doi:10.1111/j.1540-5907.2012.00602.x>, the implementation of the average value method of calculating predicted probabilities (see King, Tomz, and Wittenberg, 2000 <doi:10.2307/2669316>), and the generation and plotting of first differences to summarize typical effects across covariates (see Long 1997, ISBN:9780803973749; King, Tomz, and Wittenberg, 2000 <doi:10.2307/2669316>). This package can be used with MCMC output generated by any Bayesian estimation tool including 'JAGS', 'BUGS', 'MCMCpack', and 'Stan'.

Version: 0.2.1
Depends: R (≥ 3.5.0)
Imports: carData, caTools, coda (≥ 0.13), dplyr (≥ 0.5.0), ggmcmc, ggplot2, ggridges, R2jags, reshape2, rlang, stats, texreg, runjags, tidyr (≥ 0.5.1), HDInterval, ROCR
Suggests: datasets, knitr, MCMCpack, rjags, rmarkdown, rstan (≥ 2.10.1), rstanarm, testthat, covr
Published: 2020-05-28
Author: Johannes Karreth ORCID iD [aut], Shana Scogin ORCID iD [aut, cre], Rob Williams ORCID iD [aut], Andreas Beger ORCID iD [aut], Myunghee Lee [ctb], Neil Williams [ctb]
Maintainer: Shana Scogin <shanarscogin at>
License: GPL-3
NeedsCompilation: no
SystemRequirements: JAGS (
Materials: README NEWS
In views: Bayesian
CRAN checks: BayesPostEst results


Reference manual: BayesPostEst.pdf
Vignettes: getting_started
Package source: BayesPostEst_0.2.1.tar.gz
Windows binaries: r-devel:, r-release:, r-oldrel:
macOS binaries: r-release: BayesPostEst_0.2.1.tgz, r-oldrel: BayesPostEst_0.2.1.tgz
Old sources: BayesPostEst archive


Please use the canonical form to link to this page.